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Abstract—Salient object detection is a challenging task in
complex compositions depicting multiple objects of different
scales. Albeit the recent progress thanks to the convolutional
neural networks, the state-of-the-art methods still fall short to
handle such real-life scenarios.

In this paper, we propose a new method that exploits both
multi-scale feature fusion and pyramid spatial pooling to detect
salient object regions in varying sizes. Our framework consists
of a front-end network and two multi-scale fusion modules. The
front-end network learns an end-to-end mapping from the input
image to a saliency map, where a pyramid spatial pooling is
incorporated to aggregate rich context information from different
spatial receptive fields. The multi-scale fusion module integrates
saliency cues across different layers, that is from low-level detail
patterns to high-level semantic information by concatenating
feature maps, to segment out salient objects with multiple scales.
Extensive experimental results on eight benchmark datasets
demonstrate the superior performance of our method compared
with existing methods.

I. INTRODUCTION

Salient object detection aims at assigning each pixel in
the image a saliency label, thus predicting prominent and
important regions of the scene. It is intrinsic to many computer
vision tasks, such as context-aware image editing [1] and
semantic image labeling [2]. In general, traditional methods
either employ handcrafted features such as color, contrast, and
texture based descriptors, or compute variants of appearance
uniqueness and region compactness based on statistical priors,
e.g. center prior [3] and boundary prior [4]. These methods
achieve acceptable results on relatively simple datasets, but
their saliency maps deteriorate when the input images are
cluttered and complicated.

Data-driven approaches, in particular, deep learning has
recently achieved significant success in high-level computer
vision tasks such as image classification [5], and semantic
segmentation [6]. These approaches have also been extended
to salient object detection, e.g. [7] [8] [9] [10] [11] [12]
[13] that learn high-level feature representations of salient
objects, outperforming traditional handcrafted methods with
a large margin. Even though the success provided mainly
by fully convolutional neural networks, this task is still very
challenging for complex scenarios with multiple objects in
different scales. The state-of-the-art deep saliency methods fail
to address these difficult and practical scenarios.

Fig. 1. Given an RGB image as input, our framework employs both multi-
scale features and pyramid spatial pooling to learn the saliency map with rich
semantic information. Multi-scale feature extraction is performed to aggregate
different level side-outputs from the front-end model. Pyramid spatial pooling
aims at extracting rich context information for saliency from different regions.

To provide an efficient and robust solution for detection
of multiple varying size salient objects, we introduce multi-
scale feature fusion and incorporate them in pyramid spatial
pooling as demonstrated in Fig. 1. First, inspired by context-
based semantic segmentation networks [14] and skip-layer
edge detection networks [15], we learn a front-end deep model
that is built on a very deep classification network, ResNet [5].
This front-end deep model captures the mapping from input
color image to output saliency map, where pyramid spatial
pooling is used to integrate rich context cues for saliency
from different regions. Second, to fuse features at varying
scales from the front-end model, we propose two multi-scale
feature fusion modules that aggregate low-level patterns and
high-level semantic cues for saliency. In this way, our model
effectively partitions out multiple salient objects and resolves
multi-scale issues. Our framework is illustrated in Fig. 2.

The main contributions of the paper can be summarized as:
1) We introduce a front-end network to learn an end-to-

end mapping from the input image to saliency map by
incorporating pyramid spatial pooling.

2) We propose a multi-scale fusion module to integrate
saliency cues across different layers from low-level
details to high-level semantic information.

3) Our method achieves the state-of-the-art performance on
eight large benchmark datasets.

II. RELATED WORK

Prior to the deep learning revolution, conventional salient
object detection methods were mainly based on low-level
handcrafted features. Here, we provide an brief overview of
deep learning based approaches. We refer readers to [16]
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Fig. 2. For a given input image, the repurposed ResNet-101 [5] and a pyramid spatial pooling module generate the front-end two-channel saliency map, with
the first channel being the background map and the second channel the saliency. Then, four mid-layer outputs of the ResNet-101 network are concatenated
together with the front-end saliency map, fusing multi-scale features. Each of these two concatenated feature maps is fed to a 1 × 1 convolutional layer to
obtain the final two-channel saliency map.

and [17] for in-depth surveys and benchmark comparisons of
handcrafted feature based methods.

Deep learning approaches derive a mapping from the input
image to the saliency map by employing convolutional and
fully connected neural networks. By jointly modeling global
and local context, Li and Yu [9] proposed a multi-context deep
convolutional neural network for saliency detection. Along the
same pipeline, [18] integrated deep features and handcrafted
features. The work in [10] formulated saliency detection as a
two-stage estimation problem, where a local estimation stage
and a global search stage are performed to predict saliency
scores for salient regions. An end-to-end contrast network was
applied in [11] to produce pixel-level saliency maps. Simi-
larly, Deep Image Saliency Computing (DISC) [13] aimed at
computing fine-grained image saliency. A recurrent attentional
convolution-deconvolution network was incorporated in [19].
In [20], both CNN features and low-level features were inte-
grated. Li et al. [8] presented a multi-task learning framework
where saliency detection and semantic segmentation are jointly
learned. Liu and Han [21] utilized an end-to-end hierarchical
network for the same purpose.

Multi-scale feature fusion has been shown as a key element
in achieving the state-of-the-art performance on semantic
segmentation [22] [14] [23] and edge detection [24]. There are
mainly three types of network structures that exploit multi-
scale features. The first type is the skip-net based methods,
where features from intermediate layers are combined to
achieve a specific task. By introducing supervision to side-
outputs of the network, the Holistically-Nested Edge Detector
(HED)[24] model led to considerable improvements over
generic fully connected network models for edge detection.
Within this structure, Cheng et al. [7] proposed a saliency
detection method by introducing short connections to the skip-

layer structures of [24]. The second type of structure is to
fuse features of different context. For example, [23] and [6]
introduced the dilated convolutions that support an exponential
expansion of the receptive field without loss of resolution. The
work in [14] introduced a pyramid pooling module to exploit
the capability of context information by using a multi-scale
pooling layer. The third type of network structure is the share-
net based methods where the input image is resized to several
scales with each passes through a shared-weight deep network.
Along this line, [22] introduced an attention mechanism that
learns to softly weight the multi-scale features at each pixel
location.

Our framework is based on the fully convolutional neural
networks yet it consists of both pyramid spatial pooling and
multi-scale feature fusion. In contrast to existing methods, in
particular to multi-scale feature based saliency [7], [25] and
[11], our framework allows efficient aggregation of saliency
cues across different layers and also incorporation of rich
context information from different spatial regions.

III. OUR FRAMEWORK

Targeting at segmenting out salient objects with different
scales, we propose an end-to-end fully convolutional network
based framework to leverage on both high-level semantic cues
and low-level information. Our framework exploits the rich
context information from different spatial regions by using
pyramid spatial pooling.

Firstly, we repurpose a deep convolutional neural net-
work, PSPNet [14], adapting it from semantic segmentation
to saliency detection. By using four scale pyramid pooling,
PSPNet is able to capture both global context (with receptive
field of the whole image) and local context (with receptive field
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of 1/4, 1/9 and 1/36 respectively). This network constitutes
our front-end saliency detection model.

Secondly, we fuse high-level semantic information and low-
level feature details from different layers of the front-end
network to learn the multi-scale saliency cues. These together
constitute our multi-scale fusion model. Given an input color
image I , the front-end model produces a two-channel feature
map Sf which is 1/8 size of I . Furthermore, we add one
1 × 1 convolutional layer to the last convolutional layer of
each lower block of our front-end model (conv1 3 3×3/relu,
conv2 3/relu, conv3 4/relu and conv4 23/relu layers respec-
tively of [14]) to map the lower-level features to one-channel
feature map.

Lastly, we concatenate the above four feature maps from
the front-end model with each of the front-end (two channel)
feature maps, and apply a 1 × 1 convolutional layer to map
the concatenated feature map to a one-channel feature map.
This procedure is illustrated in Fig. 2. We train our model
in a jointly supervised manner, where the loss is evaluated at
both the front-end module and the multi-scale fusion module.

A. Front-end Model

Our front-end saliency detection network is built upon a
semantic segmentation net, i.e., PSPNet [14] and DeepLab
[6], where we repurposed a deep convolutional neural network
(ResNet-101 [5]) originally designed for image classification
to the task of semantic segmentation by 1) transforming all
fully connected layers to convolutional layers, 2) increasing
feature resolution through dilated convolutional layers [6] [23],
and 3) introducing a pyramid spatial pooling module to explore
the potential of different region-based contextual information.
Under our framework, the spatial resolution of the output
feature map is increased four times, which is superior to [10]
and [9].

With the increasing size of the receptive fields, more contex-
tual information is extracted through continuous convolutions.
This motivates building deeper networks to achieve larger
receptive fields. Even though the theoretical receptive field
of ResNet [5] is already larger than its input image, it has
been shown in [26] that the empirical receptive field of CNN
is much smaller than the theoretical one. To attain and take
advantage of contextual information from different regions,
we propose a pyramid spatial pooling module, similar to the
one used in semantic segmentation [14]. Specifically, we apply
a four-scale spatial pooling (average pooling) to the feature
maps. After spatial pooling, each feature map is fed through
a convolutional layer and upsampled to the same dimension.
The concatenated feature maps are then supplied to a two-
layer convolutional network in order to generate a two-channel
feature map, which corresponds to our saliency map. This
pyramid spatial pooling as illustrated in Fig. 3 produces a
useful contextual prior that is essential for saliency detection.

In our experiments, we randomly cropped a 425 × 425
regions of the input image. For the pyramid spatial pooling
module, four scale average pooling is utilized, where kernel

Fig. 3. Pyramid spatial pooling. Given feature map from layer “conv5 3”,
the pooling module uses four different scales. The concatenated feature maps
are then fed into the convolutional layers to map the pooling features to a
two-channel feature map.

sizes are set as k = 54, 27, 18, 9, respectively. We initialized
the front-end model using PSPNet for scene parsing [14] on
the PASCAL VOC 2012 dataset. We used the “Softmaxwith-
loss” as our loss function at the last layer.

B. Fusion of Multi-scale Features

We have two insights to leverage on cues that are available
in multiple scales. Firstly, the receptive fields of lower-level
features especially the bottom-level is quite small, which
makes it unsuitable to perform classification in an earlier
stage. Secondly, low-level features can provide favorable de-
tails while high-level features own rich semantic information.
Based on these, we use side-outputs of different layers of
the network such that we employ feature extraction modules
instead of applying classification module after each lower
block. This allows us to extract feature maps from lower
level of network to a one-channel feature map instead of two-
channel saliency map.

We define the four side-outputs from our front-end
model as A1, A2, A3, A4 (conv1 3 3× 3/relu, conv2 3/relu,
conv3 4/relu and conv4 23/relu layers respectively). Then a
conv1× 1 layer is added in the end of Ai (i = 1...4) to map
Ai to a one-channel feature map F1, F2, F3, F4. Further, we
define the two-channel feature map from our front-end model
as S = {Sb, Sf}, where Sb is the background map and Sf

is the saliency map with each pixel represents the possibility
for it to be background or salient. Finally, we fuse the above
features as:

1) Concatenating multi-level features with each channel of
the front-end feature map, with the background channel:
Fb = {F1, F2, F3, F4, Sb} and the salient foreground
channel: Ff = {F1, F2, F3, F4, Sf}.

2) Extracting new features from both low-level and high-
level features. One conv1×1 layer is used to map Fb and
Ff to a one-channel feature map Sb and Sf respectively.

3) Our final output is a two-channel feature map: Sfuse =
{Snb, Snf}.

In both the feature extraction stage and the feature fusion
stage, weights are initialized with the “MSRA” policy, and bias
is initialized with a constant. We upsample the one-channel
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feature map from each side-output to the original image size
before the last fusion stage.

C. Training Details

We trained our model using Caffe [27] where we stopped the
training when the accuracy score on the training data remained
unchanged for at least 200 iterations with a maximum iteration
number of 10K. We used the stochastic gradient descent
method with the momentum value of 0.9 and decreased the
learning rate 90% when the training loss did not decrease.
The learning rate is initialized as 1e-3 with the “poly” decay
policy. For validation, we set “test iter” as 500 (test batch
size 1) to cover the full 500 validation images. The whole
training process takes 30 hours with training batch size 1 and
“iter size” 20 on a PC with an NVIDIA Quadro M4000 GPU.
At the inference stage, it takes 0.2 seconds on average to
predict the saliency map for a 425× 425 image.

IV. EXPERIMENTAL RESULTS

A. Setup

Dataset: We have evaluated our method on eight saliency
benchmark datasets. 2,500 images from the MSRA-B dataset
[28] are used for training and 500 images are used for
validation, with the remaining 2,000 for testing. The other
seven datasets are ECSSD [29], DUT [30], SED1 and SED2
[31], PASCAL-S [32], HKU-IS [9] and THUR [33] dataset.

Compared methods: We evaluated eight state-of-the-art
deep learning based saliency detection methods: DSS [7], DC
[11], MDF [9], DeepMC [10], DMT [8], DISC [13], RFCN
[12] and LEGS [34], and four traditional saliency detection
methods: DRFI [35] and RBD [4], DSR [36] and MC [37]
which were proven in [17] as the state-of-the-art before the
era of deep learning.

Evaluation metrics: We use two evaluation metrics, namely
mean absolute error (MAE), and Precision-Recall (PR) curve.
MAE can provide a better estimate of the dissimilarity between
the estimated saliency map and the ground truth saliency map.
It is the average per-pixel difference between the ground truth
and the estimated binary saliency map, normalized to [0, 1],
which is defined as:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−GT (x, y)|,

where W and H are the width and height of the respective
saliency map S, GT is the ground truth saliency map.

The PR curves are obtained by binarizing the saliency map
in the range of [0 255], where Precision corresponds to
the percentage of salient pixels being correctly detected, and
Recall corresponds to the fraction of detected salient pixels
in relation to the ground truth number of salient pixels.

B. Comparisons with the State-of-the-art

Quantitative Comparisons: We compared our method with
eight deep learning based methods and four traditional meth-
ods. Results are shown in Table I and Fig.4, where “OUR”
represents results of our model. Table I shows that for those

eight datasets, the state-of-the-art deep learning based methods
outperform the best traditional methods with 3%-10% decrease
in MAE, which further proves the superiority of deep features
for saliency detection. Our method ranks 1st in seven out of
eight benchmark datasets except for the ECSSD dataset, where
our method ranks the 2nd. Especially for the DUT, SED1
and THUR dataset, our method achieves about 2% decrease
in MAE. We further compare the PR curve on the above
eight datasets and the results are shown in Fig. 4. The results
show that for the DUT dataset and PASCAL-S dataset, our
method outperform existing deep learning based methods with
a big margin, and for the remaining six datasets, our method
achieves consistent better performance.

Qualitative Comparisons: Fig. 5 demonstrates several
visual comparisons; as visible our method outperforms the
competing methods. The tested samples in the first two rows
of Fig. 5 are in very low contrast where most of the existing
methods failed to capture the whole salient object, especially
for DeepMC [10] and MDF [9]. In contrast, our method
successfully captures the salient objects with much sharper
edges preserved. The sample in the fourth row of Fig. 5 depicts
a simple scenario where most of the competing methods can
generate satisfactory results except for DSS [7] and MDF
[9] where the green capsicum is missed. For this image, our
method achieves the best result with most of the salient regions
highlight equally. The salient object in the fourth row has
strong internal contrast, which lead to much false detection
especially for MDF. Still, our method achieves consistently
better results inside the salient object and the most of the
background is accurately suppressed.

C. Ablation Analysis

As our multi-scale saliency detection model consists of both
front-end saliency detection and multi-scale feature fusion
based structure, it is interested to analyze the contribution of
each component. To this end, we define the front-end model
as our basic model, where we change “num output” of the
last classification layer to 2 to match our case. We trained the
front-end module for saliency detection individually, and the
performance is shown in Table II, where “Basic” represents
our front-end model. On eight benchmark datasets, our model
of using multi-scale fusion strategy achieves consistent better
performance compared with the basic model with front-end
model only, which further proves the effectiveness of our
method.

V. CONCLUSIONS

With the use of fully convolutional neural network, salient
object detection has witnessed great progress and performance
leap. However, salient object detection is still challenging for
complex scenarios with objects of multiple scales and the
current state-of-the-art methods fail to handle these difficult
and practical scenarios.

In this paper, by integrating low-level feature with high-
level features through a skip-architecture in a pyramid spatial
pooling structure, we propose a multi-scale saliency detection
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TABLE I
MAE FOR DIFFERENT METHODS INCLUDING OURS ON EIGHT BENCHMARK DATASETS.(BEST ONES IN BOLD)

DSS DC MDF DeepMC DMT DISC RFCN DRFI RBD DSR MC OUR
ECSSD 0.0628 0.0906 0.1081 0.1019 0.1601 0.0699 0.0973 0.1719 0.1739 0.1742 0.2037 0.0654
DUT 0.0760 0.0971 0.0916 0.0885 0.0758 0.1182 0.0945 0.1496 0.1467 0.1374 0.1863 0.0579
SED1 0.0887 0.0886 0.1198 0.0881 - 0.0772 0.1020 0.1454 0.1407 0.1614 0.1620 0.0676
SED2 0.1014 0.1014 0.1171 0.1162 0.1074 0.1203 0.1140 0.1373 0.1316 0.1457 0.1848 0.0863
PASCAL-S 0.1546 0.1614 0.2069 0.1928 0.2103 - 0.1662 0.2556 0.2418 0.2600 0.2719 0.1502
MSRA-B 0.0474 0.0467 0.1040 0.0491 0.0658 0.0536 0.0620 0.1229 0.1171 0.1207 0.1441 0.0379
HKU-IS 0.0520 0.0730 - 0.0913 - 0.1023 0.0798 0.1445 0.1432 0.1404 0.1840 0.0443
THUR 0.1142 0.0959 0.1029 0.1025 0.0854 - 0.1003 0.1471 0.1507 0.1408 0.1838 0.0670

Fig. 4. PR curve of our method and competing methods on eight benchmark datasets.

TABLE II
MAE FOR OUR METHOD AND THE BASIC MODEL ON EIGHT BENCHMARK DATASETS.(BEST ONES IN BOLD)

ECSSD DUT SED1 SED2 PASCAL-S MSRA-B HKU-IS THUR
Basic 0.0759 0.0658 0.0773 0.0956 0.1593 0.0425 0.0526 0.0746
OUR 0.0654 0.0579 0.0676 0.0863 0.1502 0.0379 0.0443 0.0670

Image GT OUR DSS MDF DMT DC DeepMC

Fig. 5. Qualitative comparisons of our method with the state-of-the-art.

model that can handle salient objects of multi-scale in reso-
lution as well as those exist in complex scenarios. Extensive
evaluations on eight benchmark datasets demonstrate that the
proposed method outperforms the state-of-the-art approaches
with a large margin.
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